

Simulink Fixed Point Release
Notes

Note The Fixed-Point Blockset has been replaced by two new products,
Fixed-Point Toolbox and Simulink Fixed Point. This product restructuring
reflects the broad expansion of fixed-point capabilities in MATLAB and
Simulink. The Fixed-Point Toolbox introduces fixed-point operations to
the MATLAB language, and Simulink Fixed Point enables fixed-point
capabilities across much of the Simulink product family.

The “Simulink Fixed Point 5.0 Release Notes” on page 1-1 describe the
changes introduced in Simulink Fixed-Point 5.0. The following topics are
discussed in these Release Notes:

• “New Features” on page 1-2

• “Major Bug Fixes” on page 1-14

The Simulink Fixed Point Release Notes also provide information about
recent versions of the Fixed-Point Blockset, in case you are upgrading from
a version that was released prior to Release 13 with Service Pack 1.

• “Fixed-Point Blockset 4.0.1 Release Notes” on page 2-1

• “Fixed-Point Blockset 4.0 Release Notes” on page 3-1

Printing the Release Notes
If you would like to print the Release Notes, you can link to a PDF version.

-2

i

Contents

1
Simulink Fixed Point 5.0 Release Notes

New Features . 1-2
Product Restructuring . 1-2
Fixed-Point Blocks Fully Integrated into Simulink 1-2
API for User-Written Fixed-Point S-Functions 1-11
Fixed-Point Advisor Wizard . 1-11
Arithmetic with Non-Zero Bias Fully Supported 1-12
Generated Code for Lookup Tables Uses Less ROM 1-12
Functions Moved to Simulink . 1-12
Obsolete Functions . 1-13

Major Bug Fixes . 1-14
Simulation Error for 65-Bit+ Multiplication Corrected 1-14
Fixed-Point Settings Interface Usable for Large Fonts 1-14
Lookup Table (2-D) Code Generation Bug Fixed 1-14

2
Fixed-Point Blockset 4.0.1 Release Notes

Major Bug Fixes . 2-2

Upgrading from an Earlier Release . 2-3
Backwards Compatibility of Tunable Parameters for Unified Fixed-Point Blocks 2-3

3
Fixed-Point Blockset 4.0 Release Notes

New Features . 3-2
Installation and Licensing . 3-2

ii Contents

Unified Simulink and Fixed-Point Blockset Blocks 3-3
Global Data Type Override and Logging Modes 3-5
Shift Arithmetic Block . 3-5

Upgrading from an Earlier Release . 3-6
Restoring Broken Links . 3-6
Data Type Override and Logging Parameters 3-6

1
Simulink Fixed Point 5.0
Release Notes

New Features 1-2
Product Restructuring 1-2
Fixed-Point Blocks Fully Integrated into Simulink 1-2
API for User-Written Fixed-Point S-Functions 1-11
Fixed-Point Advisor Wizard 1-11
Arithmetic with Non-Zero Bias Fully Supported 1-12
Generated Code for Lookup Tables Uses Less ROM 1-12
Functions Moved to Simulink 1-12
Obsolete Functions 1-13

Major Bug Fixes 1-14
Simulation Error for 65-Bit+ Multiplication Corrected . . . 1-14
Fixed-Point Settings Interface Usable for Large Fonts . . . 1-14
Lookup Table (2-D) Code Generation Bug Fixed 1-14

1 Simulink Fixed Point 5.0 Release Notes

1-2

New Features
This section introduces the new features and enhancements introduced in
Simulink Fixed Point 5.0 since Version 4.1 of the Fixed-Point Blockset.

• “Product Restructuring” on page 1-2

• “Fixed-Point Blocks Fully Integrated into Simulink” on page 1-2

• “API for User-Written Fixed-Point S-Functions” on page 1-11

• “Fixed-Point Advisor Wizard” on page 1-11

• “Arithmetic with Non-Zero Bias Fully Supported” on page 1-12

• “Generated Code for Lookup Tables Uses Less ROM” on page 1-12

• “Obsolete Functions” on page 1-13

Product Restructuring
The Fixed-Point Blockset has been replaced by two new products, Fixed-Point
Toolbox and Simulink Fixed Point. This product restructuring reflects the
broad expansion of fixed-point capabilities in MATLAB and Simulink. The
Fixed-Point Toolbox introduces fixed-point operations to the MATLAB
language, and Simulink Fixed Point enables fixed-point capabilities across
much of the Simulink product family.

Simulink Fixed Point requires Fixed-Point Toolbox. If you are on maintenance,
you will automatically receive both of these new products in place of the
Fixed-Point Blockset.

Fixed-Point Blocks Fully Integrated into Simulink
All former Fixed-Point Blockset blocks have been moved into the Simulink
block libraries with this release. Each of these blocks, as well as all other
Simulink blocks, can be used with or without Simulink Fixed Point installed.
You can share models with any fixed-point and floating-point Simulink blocks
among the users in your organization, whether or not they have Simulink
Fixed Point installed. However, Simulink Fixed Point is required to take full
advantage of the fixed-point features of Simulink blocks. For more information,
refer to “Sharing Fixed-Point Models” in the Simulink Fixed Point
documentation.

The following table lists all of the blocks in the Fixed-Point Blockset as of
Release 13. It tells you the current name of the block in Simulink and the

New Features

1-3

Simulink library in which you can find the block. Most blocks have the same
name as in the last release, however some block names have changed.

Former Fixed-Point
Blockset block

Former Fixed-Point
Blockset Library

Simulink Block Simulink Library

Abs Math Abs Math Operations

Accumulator Calculus Discrete-Time
Integrator

Discrete

Accumulator
Resettable

Calculus Discrete-Time
Integrator

Discrete

Accumulator
Resettable Limited

Calculus Discrete-Time
Integrator

Discrete

Add Math Add Math Operations

Bit Clear Bits Bit Clear Logic and Bit
Operations

Bit Set Bits Bit Set Logic and Bit
Operations

Bitwise Operator Bits Bitwise Operator Logic and Bit
Operations

Compare To Constant Logic & Comparison Compare To Constant Logic and Bit
Operations

Compare To Zero Logic & Comparison Compare To Zero Logic and Bit
Operations

Constant Sources Constant Sources

Conversion Data Type Data Type
Conversion

Signal Attributes

Conversion Inherited Data Type Data Type
Conversion Inherited

Signal Attributes

Cosine Lookup Cosine Lookup Tables

1 Simulink Fixed Point 5.0 Release Notes

1-4

Counter Free Sources Counter
Free-Running

Sources

Counter Limited Sources Counter Limited Sources

Data Type Duplicate Data Type Data Type Duplicate Signal Attributes

Data Type
Propagation

Data Type Data Type
Propagation

Signal Attributes

Dead Zone Nonlinear Dead Zone Discontinuities

Dead Zone Dynamic Nonlinear Dead Zone Dynamic Discontinuities

Decrement Real
World

Math Decrement Real
World

Additional Math &
Discrete / Additional
Math: Increment -
Decrement

Decrement Stored
Integer

Math Decrement Stored
Integer

Additional Math &
Discrete / Additional
Math: Increment -
Decrement

Decrement Time To
Zero

Math Decrement Time To
Zero

Additional Math &
Discrete / Additional
Math: Increment -
Decrement

Decrement To Zero Math Decrement To Zero Additional Math &
Discrete / Additional
Math: Increment -
Decrement

Derivative Calculus Discrete Derivative Discrete

Detect Change Edge Detect Detect Change Logic and Bit
Operations

Former Fixed-Point
Blockset block

Former Fixed-Point
Blockset Library

Simulink Block Simulink Library

New Features

1-5

Detect Decrease Edge Detect Detect Decrease Logic and Bit
Operations

Detect Fall Negative Edge Detect Detect Fall Negative Logic and Bit
Operations

Detect Fall
Nonpositive

Edge Detect Detect Fall
Nonpositive

Logic and Bit
Operations

Detect Increase Edge Detect Detect Increase Logic and Bit
Operations

Detect Rise
Nonnegative

Edge Detect Detect Rise
Nonnegative

Logic and Bit
Operations

Detect Rise Positive Edge Detect Detect Rise Positive Logic and Bit
Operations

Difference Calculus Difference Discrete

Divide Math Divide Math Operations

Dot Product Math Dot Product Math Operations

Filter Direct Form I Filters This block is obsolete.

Filter Direct Form I
Time Varying

Filters This block is obsolete.

Filter Direct Form II Filters Transfer Fcn Direct
Form II

Additional Math &
Discrete / Additional
Discrete

Filter Direct Form II
Time Varying

Filters Transfer Fcn Direct
Form II Time
Varying

Additional Math &
Discrete / Additional
Discrete

Filter First Order Filters Transfer Fcn First
Order

Discrete

Former Fixed-Point
Blockset block

Former Fixed-Point
Blockset Library

Simulink Block Simulink Library

1 Simulink Fixed Point 5.0 Release Notes

1-6

Filter Lead or Lag Filters Transfer Fcn Lead or
Lag

Discrete

Filter Real Zero Filters Transfer Fcn Real
Zero

Discrete

FIR Filters Weighted Moving
Average

Discrete

Gain Math Gain Math Operations

Gateway In Data Type Data Type
Conversion

Signal Attributes

Gateway In Inherited Data Type Data Type
Conversion Inherited

Signal Attributes

Gateway Out Data Type Data Type
Conversion

Signal Attributes

Increment Real
World

Math Increment Real
World

Additional Math &
Discrete / Additional
Math: Increment -
Decrement

Increment Stored
Integer

Math Increment Stored
Integer

Additional Math &
Discrete / Additional
Math: Increment -
Decrement

Index Vector Select Index Vector Signal Routing

Integer Delay Delays & Holds Integer Delay Discrete

Integrator Backward Calculus Discrete-Time
Integrator

Discrete

Integrator Backward
Resettable

Calculus Discrete-Time
Integrator

Discrete

Former Fixed-Point
Blockset block

Former Fixed-Point
Blockset Library

Simulink Block Simulink Library

New Features

1-7

Integrator Backward
Resettable Limited

Calculus Discrete-Time
Integrator

Discrete

Integrator Forward Calculus Discrete-Time
Integrator

Discrete

Integrator Forward
Resettable

Calculus Discrete-Time
Integrator

Discrete

Integrator Forward
Resettable Limited

Calculus Discrete-Time
Integrator

Discrete

Integrator
Trapezoidal

Calculus Discrete-Time
Integrator

Discrete

Integrator
Trapezoidal
Resettable

Calculus Discrete-Time
Integrator

Discrete

Integrator
Trapezoidal
Resettable Limited

Calculus Discrete-Time
Integrator

Discrete

Interval Test Logic & Comparison Interval Test Logic and Bit
Operations

Interval Test
Dynamic

Logic & Comparison Interval Test
Dynamic

Logic and Bit
Operations

Logical Operator Logic & Comparison Logical Operator Logic and Bit
Operations

Lookup Table Lookup Lookup Table Lookup Tables

Lookup Table
Dynamic

Lookup Lookup Table
Dynamic

Lookup Tables

Lookup Table (2-D) Lookup Lookup Table (2-D) Lookup Tables

Matrix Gain Math Gain Math Operations

Former Fixed-Point
Blockset block

Former Fixed-Point
Blockset Library

Simulink Block Simulink Library

1 Simulink Fixed Point 5.0 Release Notes

1-8

MinMax Math MinMax Math Operations

MinMax Running
Resettable

Math MinMax Running
Resettable

Math Operations

Multiply Math Product Math Operations

Multiply Matrix Math Product Math Operations

Multi-Port Switch Select Multiport Switch Signal Routing

Product Math Product Math Operations

Product of Elements Math Product of Elements Math Operations

Product of Elements
Inverted

Math Product of Elements Math Operations

Rate Limiter Nonlinear Rate Limiter Discontinuities

Rate Limiter
Dynamic

Nonlinear Rate Limiter
Dynamic

Discontinuities

Relational Operator Logic & Comparison Relational Operator Logic and Bit
Operations

Relay Nonlinear Relay Discontinuities

Repeating Sequence
Interpolated

Sources Repeating Sequence
Interpolated

Sources

Repeating Sequence
Stair

Sources Repeating Sequence
Stair

Sources

Sample Rate Probe Calculus Weighted Sample
Time

Signal Attributes

Sample Time Add Calculus Weighted Sample
Time

Signal Attributes

Former Fixed-Point
Blockset block

Former Fixed-Point
Blockset Library

Simulink Block Simulink Library

New Features

1-9

Sample Time Divide Calculus Weighted Sample
Time

Signal Attributes

Sample Time
Multiply

Calculus Weighted Sample
Time

Signal Attributes

Sample Time Probe Calculus Weighted Sample
Time

Signal Attributes

Sample Time
Subtract

Calculus Weighted Sample
Time

Signal Attributes

Saturation Nonlinear Saturation Discontinuities

Saturation Dynamic Nonlinear Saturation Dynamic Discontinuities

Scaling Strip Data Type Data Type Scaling
Strip

Signal Attributes

Shift Arithmetic Bits Shift Arithmetic Logic and Bit
Operations

Sign Nonlinear Sign Math Operations

Sine Lookup Sine Lookup Tables

State-Space Filters Fixed-Point
State-Space

Additional Math &
Discrete / Additional
Discrete

Subtract Math Subtract Math Operations

Sum Math Sum Math Operations

Sum of Elements Math Sum of Elements Math Operations

Sum of Elements
Negated

Math Sum of Elements Math Operations

Switch Select Switch Signal Routing

Former Fixed-Point
Blockset block

Former Fixed-Point
Blockset Library

Simulink Block Simulink Library

1 Simulink Fixed Point 5.0 Release Notes

1-10

Tapped Delay Delays & Holds Tapped Delay Discrete

Unary Minus Math Unary Minus Math Operations

Unit Delay Delays & Holds Unit Delay Discrete

Unit Delay Enabled Delays & Holds Unit Delay Enabled Additional Math &
Discrete / Additional
Discrete

Unit Delay Enabled
External IC

Delays & Holds Unit Delay Enabled
External IC

Additional Math &
Discrete / Additional
Discrete

Unit Delay Enabled
Resettable

Delays & Holds Unit Delay Enabled
Resettable

Additional Math &
Discrete / Additional
Discrete

Unit Delay Enabled
Resettable External
IC

Delays & Holds Unit Delay Enabled
Resettable External
IC

Additional Math &
Discrete / Additional
Discrete

Unit Delay External
IC

Delays & Holds Unit Delay External
IC

Additional Math &
Discrete / Additional
Discrete

Unit Delay
Resettable

Delays & Holds Unit Delay
Resettable

Additional Math &
Discrete / Additional
Discrete

Unit Delay
Resettable External
IC

Delays & Holds Unit Delay
Resettable External
IC

Additional Math &
Discrete / Additional
Discrete

Unit Delay With
Preview Enabled

Delays & Holds Unit Delay With
Preview Enabled

Additional Math &
Discrete / Additional
Discrete

Former Fixed-Point
Blockset block

Former Fixed-Point
Blockset Library

Simulink Block Simulink Library

New Features

1-11

API for User-Written Fixed-Point S-Functions
You can now write your own Simulink C S-functions that directly handle
fixed-point data types with a newly published API. For more information, refer
to “Writing Fixed-Point S-Functions” in the Simulink Fixed Point
documentation.

Fixed-Point Advisor Wizard
Simulink Fixed Point now includes a Model Advisor to help you to configure
your fixed-point models to achieve a more efficient design and optimize your
generated code. To use the Model Advisor to check your fixed-point models:

1 Select Model Advisor from the Tools menu of the model you wish to
analyze. The Model Advisor appears in the Documents window on the
MATLAB desktop.

Unit Delay With
Preview Enabled
Resettable

Delays & Holds Unit Delay With
Preview Enabled
Resettable

Additional Math &
Discrete / Additional
Discrete

Unit Delay With
Preview Enabled
Resettable External
RV

Delays & Holds Unit Delay With
Preview Enabled
Resettable External
RV

Additional Math &
Discrete / Additional
Discrete

Unit Delay With
Preview Resettable

Delays & Holds Unit Delay With
Preview Resettable

Additional Math &
Discrete / Additional
Discrete

Unit Delay Preview
Resettable External
RV

Delays & Holds Unit Delay With
Preview Resettable
External RV

Additional Math &
Discrete / Additional
Discrete

Wrap To Zero Nonlinear Wrap To Zero Discontinuities

Zero-Order Hold Delays & Holds Zero-Order Hold Discrete

Former Fixed-Point
Blockset block

Former Fixed-Point
Blockset Library

Simulink Block Simulink Library

1 Simulink Fixed Point 5.0 Release Notes

1-12

2 Click Select All to enable all Model Advisor checks. For fixed-point code
generation, the most important check boxes to select are Identify
questionable fixed-point operations, Identify blocks that generate
expensive saturation and rounding code, and Check the Hardware
Implementation.

3 Click Check Model. Any tips for improving the efficiency of your fixed-point
model appear in the browser.

Arithmetic with Non-Zero Bias Fully Supported
Code generation has been enhanced to generate bit-true fixed-point code that
supports multiplication, division, and reciprocal for signal and parameters
with non-zero bias. Previously, these cases lead to code generation errors. Code
will now be generated for these cases, and that code will make efficient use of
just C integer operations.

Generated Code for Lookup Tables Uses Less ROM
In prior releases, the size of the generated code for models that contained
lookup tables with similar attributes was larger than necessary. Such lookup
tables produced similar algorithms that appeared throughout the code
multiple times. In this release, some common algorithms have been placed into
functions which are called by the lookup tables. This enables the same code to
be reused multiple times. The overall size of the generated code has been
reduced through this enhancement.

Functions Moved to Simulink
The following former Fixed-Point Blockset functions are now installed with
Simulink:

• fixptbestexp
• fixptbestprec
• fixpt_interp1
• fixpt_look1_func_approx
• fixpt_look1_func_plot
• fixpt_set_all
• float
• fxptdlg

New Features

1-13

• num2fixpt
• sfix
• sfrac
• sint
• ufix
• ufrac
• uint

Obsolete Functions
The functions fixpt_restore_links and fpupdate are obsolete. These
functions are no longer needed to update models.

1 Simulink Fixed Point 5.0 Release Notes

1-14

Major Bug Fixes
The Fixed-Point Blockset 5.0 includes several bug fixes made since Version 4.1.
This section describes the particularly important Version 5.0 bug fixes.

Simulation Error for 65-Bit+ Multiplication Corrected
In prior releases, fixed-point multiplication could produce the wrong answer
under certain simulation conditions. For this error to occur, one input had to
have at least 33 bits and the other input at least 32 bits. The correct answer
had to be negative, and some additional numerical criteria had to be met. This
error could only occur in simulation; it never occurred in generated code. This
error has been fully corrected for this release.

Fixed-Point Settings Interface Usable for Large
Fonts
In the previous release, the Fixed-Point Settings interface was unusable if your
system setup defined large default system fonts. When trying to open the
dialog, an error would be reported and the dialog would not appear. The
creation of the dialog has now been made robust to large fonts, and this
problem is solved.

Lookup Table (2-D) Code Generation Bug Fixed
In a previous release, code generation would error out for the Lookup Table
(2-D) block if the input data type had non-zero bias or non-one fractional slope,
and the corresponding breakpoints were evenly spaced. This problem has been
fixed.

Major Bug Fixes

1-15

2
Fixed-Point Blockset 4.0.1
Release Notes

Major Bug Fixes 2-2

Upgrading from an Earlier Release 2-3
Backwards Compatibility of Tunable Parameters for

Unified Fixed-Point Blocks 2-3

Major Bug Fixes

2-2

Major Bug Fixes
The Fixed-Point Blockset 4.0.1 includes several important bug fixes made since
Version 4.0.

If you are viewing these Release Notes in PDF form, please refer to the HTML
form of the Release Notes, using either the Help browser or the MathWorks
Web site and use the link provided.

2 Fixed-Point Blockset 4.0.1 Release Notes

2-3

Upgrading from an Earlier Release
Below is an upgrade issue involved in upgrading from the Fixed-Point Blockset
4.0 to Version 4.0.1.

If you are upgrading from a version earlier than 4.0, then you should see
“Upgrading from an Earlier Release” on page 3-6 in the Fixed-Point Blockset
4.0 Release Notes.

Backwards Compatibility of Tunable Parameters for
Unified Fixed-Point Blocks
Unified fixed-point blocks with tunable parameters have compatibility
problems under certain conditions in Release 13. The problem arises only if a
tunable parameter is mapped to a built-in integer or single data type. When
tunable parameters are mapped to built-in integers or single, the code
generated by Real Time Workshop will be different for unified blocks than it
was for Fixed-Point Blockset blocks in prior releases. There are no
compatibility problems if a tunable parameter maps to a nonbuilt-in data type,
such as a scaled fixed-point integer.

Tunable parameters are entered in a Simulink model by specifying the name
of a MATLAB variable in a block’s dialog. This variable can be either a plain
MATLAB variable or a Simulink parameter object. In either case, a numerical
value will be defined for this tunable parameter by doing an assignment in
MATLAB. MATLAB supports several numerical data types including the eight
Simulink built-in numerical data types: double, single, int8, uint8, int16,
uint16, int32, and uint32. One of these eight data types can be used when a
value is defined for a MATLAB variable. The effect of the data type of the
MATLAB variable is significantly different depending on how the tunable
parameter is used in Simulink.

For Simulink built-in blocks, the legacy rule is to fully respect the data type
used for the value of a MATLAB variable. Whatever data type is used in
MATLAB when assigning a value to a variable is also be used when declaring
that parameter in code generated by Real Time Workshop. The use of that
parameter by a block may require the value to be represented using a different
data type. If so, additional code is generated to convert the parameter every
time it is used by the block. To get the most efficient code for a given block, the
value of the MATLAB variable should use the same data type as is needed by
the block.

Upgrading from an Earlier Release

2-4

For Fixed-Point Blockset blocks, the legacy rule is to expect no data type
information from the MATLAB variable used for the tunable parameter. A
fundamental reason for this is that MATLAB does not have native support for
fixed-point data types and scaling, so the Simulink built-in legacy rule could
not be directly extended to the general fixed-point case. Many fixed-point
blocks automatically determine the data type and scaling for parameters based
on what leads to the most efficient implementation of a given block. However,
certain blocks such as Constant, as well as blocks that use tunable parameters
in multiplication, do not imply a unique best choice for the data type and
scaling of the parameter. These blocks have provided separate parameters on
their dialogs for entering this information.

In Release 13, many Simulink built-in blocks and Fixed-Point Blockset blocks
were unified. The Saturation block is an example of a unified block. The
Saturation block appears in both the Simulink Library and in the Fixed-Point
Blockset Library, but regardless of where it appears it has identical behavior.
This identical unified behavior includes the treatment of tunable parameters.
The dissimilarity of the legacy rules for tunable parameters has lead to a
shortcoming in the unified blocks. Unified blocks obey the Simulink legacy rule
sometimes and the Fixed-Point Blockset legacy rule at other times. If the block
is using the parameter with built-in Simulink data types, then the Simulink
legacy rule applies. If the block is using the parameter with nonbuilt-in data
types, such as scaled fixed-point data types, then the Fixed-Point Blockset
legacy rule applies. This gives full backwards compatibility with one important
exception.

The backwards compatibility issue arises when a model created prior to R13
uses a Fixed-Point Blockset block with a tunable parameter, and the data type
used by the block happens to be a built-in data type. If the block is unified, it
will now handle the parameter using the Simulink legacy rule rather than the
Fixed-Point Blockset legacy rule. This can have a significant impact. For
example, suppose the tunable parameter is used in a Saturation block and the
data type of the input signal is a built-in int16. In prior releases, the
Fixed-Point Blockset block would have declared the parameter as an int16.
For legacy fixed-point models, the MATLAB variables used for tunable
parameters invariably gave their value using floating-point double. The
unified Saturation block would now declare the tunable parameter in the
generated code as double. This has several negatives. The variable takes up six
more bytes of memory as a double than as an int16. The code for the
Saturation block now includes conversions from double to int16 that execute
every time the block executes. This increases code size and slows down

2 Fixed-Point Blockset 4.0.1 Release Notes

2-5

execution. If the design was intended for use on a fixed-point processor, the use
of floating-point variables and floating-point conversion code is likely to be
unacceptable. It should be noted that the numerical behavior of the blocks is
not changed even though the generated code is different.

For an individual block, the backwards compatibility issue is easily solved. The
solution involves understanding that the Simulink legacy rule is being applied.
The Simulink legacy rule preserves the data type used when assigning the
value to the MATLAB variable. The problem is that an undesired data type will
be used in the generated code. To solve this, you should change the way you
assign the value of the tunable parameter. Determine what data type is desired
in the generated code, then use an explicit type cast when assigning the value
in MATLAB. For example, if int16 is desired in the generated code and the
initial value is 3, then assign the value in MATLAB as int16(3). The
generated code will now be as desired.

A preliminary step to solving this issue with tunable parameters is identifying
which blocks are affected. In most cases, the treatment of the parameter will
involve a downcast from double to a smaller data type. On the Diagnostics tab
of the Simulation Parameters dialog is a line item called Parameter
downcast. Setting this item to Warning or None will help identify the blocks
whose tunable parameters require reassignment of their variables.

In R13, the solution described above did not work for three unified blocks:
Switch, Look-Up Table, and Lookup Table (2-D). These blocks caused errors
when the value of a tunable parameter was specified using integer data types.
This was a false error and has been removed. Using an explicit type cast when
assigning a value to the MATLAB variable now solves the issue of generating
code with the desired data types.

3
Fixed-Point Blockset 4.0
Release Notes

New Features 3-2
Installation and Licensing 3-2
Unified Simulink and Fixed-Point Blockset Blocks 3-3
Global Data Type Override and Logging Modes 3-5
Shift Arithmetic Block 3-5

Upgrading from an Earlier Release 3-6
Restoring Broken Links 3-6
Data Type Override and Logging Parameters 3-6

3 Fixed-Point Blockset 4.0 Release Notes

3-2

New Features
This section summarizes the new features and enhancements introduced in the
Fixed-Point Blockset 4.0.

This section is organized into the following subsections:

• “Installation and Licensing” on page 3-2

• “Unified Simulink and Fixed-Point Blockset Blocks” on page 3-3

• “Global Data Type Override and Logging Modes” on page 3-5

• “Shift Arithmetic Block” on page 3-5

Installation and Licensing
To support the sharing of models in a large organization, Version 4.0 of the
Fixed-Point Blockset is automatically installed whenever Simulink is
installed. You can configure models to either take full advantage of all
fixed-point features, or to run without a Fixed-Point Blockset license.
Therefore all Simulink users in your organization can run and work on the
same model, regardless of whether they have a Fixed-Point Blockset license.

You must have a Fixed-Point Blockset license to run a model if it is configured
to log minimums, maximums, or overflows. You control logging with the
system-level setting Logging mode. If you turn logging off at the top-level
system in a model, then no data is logged for any block in any subsystem of the
model, and a Fixed-Point Blockset license is not required. You also need a
Fixed-Point Blockset license to run a model that uses any nonbuilt-in,
fixed-point data types. However, you can use the system-level setting Data
type override to force blocks to use doubles or singles instead of fixed-point
data types. Therefore, by turning the Data type override parameter on and
the Logging mode parameter off at the top level of a model, a Simulink user
without a Fixed-Point Blockset license can run a model with fixed-point
enabled blocks. See “Global Data Type Override and Logging Modes” on
page 3-5 for more information on these settings.

If you have a Fixed-Point Blockset license, you can run bit-true simulations
with your models that contain fixed-point enabled blocks. If a Fixed-Point
Blockset license is not available or desired, you can turn logging off and data
type override on at the top level of your model and perform idealized floating
point-based simulations.

New Features

3-3

If you have both a Fixed-Point Blockset license and a Real-Time Workshop
license, you can generate bit-true integer code from your models with
fixed-point enabled blocks. If you do not have a Fixed-Point Blockset license but
you do have a Real-Time Workshop license, you can generate idealized
floating-point code from your models with fixed-point enabled blocks.

Unified Simulink and Fixed-Point Blockset Blocks
Many core Simulink and Fixed-Point Blockset blocks with similar functions
have been unified in this release. For example, the Sum block in the Simulink
Math Operations library and the Sum block in the Fixed-Point Blockset Math
library are now the same block. All the functionality from each original block
has been maintained in unifying these blocks. Compatibility with fixed-point
data types and/or specific fixed-point features are now available with all of
these blocks, whether the blocks used are from Simulink or from the
Fixed-Point Blockset. You do not need to make any changes to your earlier
models as a result of this improvement. You can now use any of the unified
blocks with either built-in data types or fixed-point data types, which
eliminates the need to replace blocks in your models when you want to use
different data types. This change does not require Simulink users to have a
Fixed-Point Blockset license. Refer to “Installation and Licensing” on page 3-2
above for more information.

Fixed-Point Blockset blocks that have been unified no longer have an “F” on
their block icon. However, not all Fixed-Point Blockset blocks that have
counterparts in Simulink libraries have been unified. You can still use the
fixpt_convert function to replace nonunified Simulink blocks with their
Fixed-Point Blockset counterparts in your models.

Nonunified Fixed-Point Blockset blocks have an advantage over their Simulink
counterparts in that they can handle more data types. As discussed above, you
can easily switch them between fixed-point data types and singles or doubles
using the global data type override setting. However, you may still want to use
the Simulink counterparts of nonunified Fixed-Point Blockset blocks in some
cases, because they support faster simulation times for the data types they
handle.

3 Fixed-Point Blockset 4.0 Release Notes

3-4

The following table lists the unified blocks in this release, and the Simulink
and Fixed-Point Blockset libraries in which they are found.

Block Simulink Library Fixed-Point Blockset Library

Abs Math Operations Math

Constant Sources Sources

Data Store Memory Signal Routing N/A

Data Store Read Signal Routing N/A

Data Store Write Signal Routing N/A

Gain Math Operations Math

Inport Ports & Subsystems, Sources N/A

Logical Operator Math Operations Logic & Comparison

Look-Up Table Look-Up Tables LookUp

Look-Up Table (2-D) Look-Up Tables LookUp

Manual Switch Signal Routing N/A

Memory Discrete N/A

Merge Signal Routing N/A

Multi-Port Switch Signal Routing Select

Outport Ports & Subsystems, Sinks N/A

Product Math Operations Math

Rate Transition Signal Attributes N/A

Relational Operator Math Operations Logic & Comparison

Relay Discontinuities Nonlinear

Saturation Discontinuities Nonlinear

Sign Math Operations Nonlinear

New Features

3-5

Global Data Type Override and Logging Modes
You can now set data type override and logging modes for systems or
subsystems in the Fixed-Point Blockset Interface. The Override data type(s)
with doubles and Log minimums and maximums check boxes have been
removed from the mask of every Fixed-Point Blockset block. See “Data Type
Override and Logging Parameters” on page 3-6.

Shift Arithmetic Block
The Fixed-Point Blockset now includes the Shift Arithmetic block in the Bits
library. The Shift Arithmetic block shifts the bits or binary point of a signal, or
both.

Signal Specification Signal Attributes N/A

Slider Gain Math Operations N/A

Sum Math Operations Math

Switch Signal Routing Select

Unit Delay Discrete Delays & Holds

Zero-Order Hold Discrete Delays & Holds

Block Simulink Library Fixed-Point Blockset Library

3 Fixed-Point Blockset 4.0 Release Notes

3-6

Upgrading from an Earlier Release
This section describes the upgrade issues involved in moving from the
Fixed-Point Blockset 3.1 to Version 4.0.

Restoring Broken Links
Breaking library links to Fixed-Point Blockset blocks will almost certainly
produce an error when you attempt to run the model. If broken links exist, you
will likely uncover them when upgrading to the latest release of the
Fixed-Point Blockset. The fixpt_restore_links command can be used to
restore links for Fixed-Point Blockset blocks.

Data Type Override and Logging Parameters
The Override data type(s) with doubles and Log minimums and maximums
check boxes have been removed from the mask of every Fixed-Point Blockset
block. You can now set these parameters on the system or subsystem level.

When you upgrade to Version 4.0, all doubles override and logging information
is cleared from your models. You can reset these controls in the Fixed-Point
Blockset Interface for any system or subsystem. Access the Fixed-Point
Blockset Interface from the Simulink Tools menu, or by typing
fxptdlg('modelname') at the MATLAB command line.

If you have been getting or setting the block parameters DblOver or dolog in
your M-code, you must now use the system parameters DataTypeOverride and
MinMaxOverflowLogging.

	Simulink Fixed Point 5.0 Release Notes
	New Features
	Product Restructuring
	Fixed-Point Blocks Fully Integrated into Simulink
	API for User-Written Fixed-Point S-Functions
	Fixed-Point Advisor Wizard
	Arithmetic with Non-Zero Bias Fully Supported
	Generated Code for Lookup Tables Uses Less ROM
	Functions Moved to Simulink
	Obsolete Functions

	Major Bug Fixes
	Simulation Error for 65-Bit+ Multiplication Corrected
	Fixed-Point Settings Interface Usable for Large Fonts
	Lookup Table (2-D) Code Generation Bug Fixed

	Fixed-Point Blockset 4.0.1 Release Notes
	Major Bug Fixes
	Upgrading from an Earlier Release
	Backwards Compatibility of Tunable Parameters for Unified Fixed-Point Blocks

	Fixed-Point Blockset 4.0 Release Notes
	New Features
	Installation and Licensing
	Unified Simulink and Fixed-Point Blockset Blocks
	Global Data Type Override and Logging Modes
	Shift Arithmetic Block

	Upgrading from an Earlier Release
	Restoring Broken Links
	Data Type Override and Logging Parameters

